Shortest Path + OpenFlow13
[Description]
Referring to http://sdn-lab.com/2014/12/25/shortest-path-forwarding-with-openflow-on-ryu/ and simple_switch_13.py, I prepare a script that can find a shortest path from sender to receiver even when there is a loop in transmission environment . The openvswitch used in the mininet environment supports OpenFlow version 1.3.
[script—shortestpath13.py : put this file under ~/ryu/ryu/app]
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from ryu.base import app_manager from ryu.controller import mac_to_port from ryu.controller import ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from ryu.lib.mac import haddr_to_bin from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ether_types from ryu.lib import mac from ryu.topology.api import get_switch, get_link from ryu.app.wsgi import ControllerBase from ryu.topology import event, switches import networkx as nx class ProjectController(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self, *args, **kwargs): super(ProjectController, self).__init__(*args, **kwargs) self.mac_to_port = {} self.topology_api_app = self self.net=nx.DiGraph() self.nodes = {} self.links = {} self.no_of_nodes = 0 self.no_of_links = 0 self.i=0
# Handy function that lists all attributes in the given object def ls(self,obj): print("\n".join([x for x in dir(obj) if x[0] != "_"]))
def add_flow(self, datapath, in_port, dst, actions): ofproto = datapath.ofproto parser = datapath.ofproto_parser match = datapath.ofproto_parser.OFPMatch(in_port=in_port, eth_dst=dst) inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] mod = datapath.ofproto_parser.OFPFlowMod( datapath=datapath, match=match, cookie=0, command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0, priority=ofproto.OFP_DEFAULT_PRIORITY, instructions=inst) datapath.send_msg(mod) @set_ev_cls(ofp_event.EventOFPSwitchFeatures , CONFIG_DISPATCHER) def switch_features_handler(self , ev): print "switch_features_handler is called" datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser match = parser.OFPMatch() actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS , actions)] mod = datapath.ofproto_parser.OFPFlowMod( datapath=datapath, match=match, cookie=0, command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0, priority=0, instructions=inst) datapath.send_msg(mod)
@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port']
pkt = packet.Packet(msg.data) eth = pkt.get_protocol(ethernet.ethernet) dst = eth.dst src = eth.src dpid = datapath.id self.mac_to_port.setdefault(dpid, {}) #print "nodes" #print self.net.nodes() #print "edges" #print self.net.edges() #self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
if src not in self.net: self.net.add_node(src) self.net.add_edge(dpid,src,{'port':in_port}) self.net.add_edge(src,dpid) if dst in self.net: #print (src in self.net) #print nx.shortest_path(self.net,1,4) #print nx.shortest_path(self.net,4,1) #print nx.shortest_path(self.net,src,4) path=nx.shortest_path(self.net,src,dst) next=path[path.index(dpid)+1] out_port=self.net[dpid][next]['port'] else: out_port = ofproto.OFPP_FLOOD actions = [datapath.ofproto_parser.OFPActionOutput(out_port)] # install a flow to avoid packet_in next time if out_port != ofproto.OFPP_FLOOD: self.add_flow(datapath, in_port, dst, actions) out = datapath.ofproto_parser.OFPPacketOut( datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions) datapath.send_msg(out)
@set_ev_cls(event.EventSwitchEnter) def get_topology_data(self, ev): switch_list = get_switch(self.topology_api_app, None) switches=[switch.dp.id for switch in switch_list] self.net.add_nodes_from(switches)
print "**********List of switches" for switch in switch_list: #self.ls(switch) print switch #self.nodes[self.no_of_nodes] = switch #self.no_of_nodes += 1
links_list = get_link(self.topology_api_app, None) #print links_list links=[(link.src.dpid,link.dst.dpid,{'port':link.src.port_no}) for link in links_list] #print links self.net.add_edges_from(links) links=[(link.dst.dpid,link.src.dpid,{'port':link.dst.port_no}) for link in links_list] #print links self.net.add_edges_from(links) print "**********List of links" print self.net.edges() |
[Execution]
1. Open a terminal to start ryu controller
2. Open another terminal to generate a tree topology.
3. After creating the topology, we can see the nodes and links in ryu controller.
4. h1 can ping h3
Dr. Chih-Heng Ke
Department of Computer Science and
Information Engineering, National Quemoy University, Kinmen, Taiwan
Email: smallko@gmail.com